
4Fuzzy expert systems

In which we present fuzzy set theory, consider how to build fuzzy

expert systems and illustrate the theory through an example.

4.1 Introduction, or what is fuzzy thinking?

Experts usually rely on common sense when they solve problems. They also use

vague and ambiguous terms. For example, an expert might say, ‘Though the

power transformer is slightly overloaded, I can keep this load for a while’. Other

experts have no difficulties with understanding and interpreting this statement

because they have the background to hearing problems described like this.

However, a knowledge engineer would have difficulties providing a computer

with the same level of understanding. How can we represent expert knowledge

that uses vague and ambiguous terms in a computer? Can it be done at all?

This chapter attempts to answer these questions by exploring the fuzzy set

theory (or fuzzy logic). We review the philosophical ideas behind fuzzy logic,

study its apparatus and then consider how fuzzy logic is used in fuzzy expert

systems.

Let us begin with a trivial, but still basic and essential, statement: fuzzy logic is

not logic that is fuzzy, but logic that is used to describe fuzziness. Fuzzy logic

is the theory of fuzzy sets, sets that calibrate vagueness. Fuzzy logic is based on

the idea that all things admit of degrees. Temperature, height, speed, distance,

beauty – all come on a sliding scale. The motor is running really hot. Tom is

a very tall guy. Electric cars are not very fast. High-performance drives require

very rapid dynamics and precise regulation. Hobart is quite a short distance

from Melbourne. Sydney is a beautiful city. Such a sliding scale often makes it

impossible to distinguish members of a class from non-members. When does a

hill become a mountain?

Boolean or conventional logic uses sharp distinctions. It forces us to draw

lines between members of a class and non-members. It makes us draw lines in

the sand. For instance, we may say, ‘The maximum range of an electric vehicle is

short’, regarding a range of 300 km or less as short, and a range greater than

300 km as long. By this standard, any electric vehicle that can cover a distance of

301 km (or 300 km and 500 m or even 300 km and 1 m) would be described as



long-range. Similarly, we say Tom is tall because his height is 181 cm. If we drew

a line at 180 cm, we would find that David, who is 179 cm, is small. Is David

really a small man or have we just drawn an arbitrary line in the sand? Fuzzy

logic makes it possible to avoid such absurdities.

Fuzzy logic reflects how people think. It attempts to model our sense of words,

our decision making and our common sense. As a result, it is leading to new,

more human, intelligent systems.

Fuzzy, or multi-valued logic was introduced in the 1930s by Jan Lukasiewicz, a

Polish logician and philosopher (Lukasiewicz, 1930). He studied the mathema-

tical representation of fuzziness based on such terms as tall, old and hot. While

classical logic operates with only two values 1 (true) and 0 (false), Lukasiewicz

introduced logic that extended the range of truth values to all real numbers in

the interval between 0 and 1. He used a number in this interval to represent the

possibility that a given statement was true or false. For example, the possibility

that a man 181 cm tall is really tall might be set to a value of 0.86. It is likely that

the man is tall. This work led to an inexact reasoning technique often called

possibility theory.

Later, in 1937, Max Black, a philosopher, published a paper called ‘Vagueness:

an exercise in logical analysis’ (Black, 1937). In this paper, he argued that a

continuum implies degrees. Imagine, he said, a line of countless ‘chairs’. At one

end is a Chippendale. Next to it is a near-Chippendale, in fact indistinguishable

from the first item. Succeeding ‘chairs’ are less and less chair-like, until the line

ends with a log. When does a chair become a log? The concept chair does not

permit us to draw a clear line distinguishing chair from not-chair. Max Black

also stated that if a continuum is discrete, a number can be allocated to each

element. This number will indicate a degree. But the question is degree of what.

Black used the number to show the percentage of people who would call an

element in a line of ‘chairs’ a chair; in other words, he accepted vagueness as a

matter of probability.

However, Black’s most important contribution was in the paper’s appendix.

Here he defined the first simple fuzzy set and outlined the basic ideas of fuzzy set

operations.

In 1965 Lotfi Zadeh, Professor and Head of the Electrical Engineering

Department at the University of California at Berkeley, published his famous

paper ‘Fuzzy sets’. In fact, Zadeh rediscovered fuzziness, identified and explored

it, and promoted and fought for it.

Zadeh extended the work on possibility theory into a formal system of

mathematical logic, and even more importantly, he introduced a new concept

for applying natural language terms. This new logic for representing and

manipulating fuzzy terms was called fuzzy logic, and Zadeh became the Master

of fuzzy logic.

Why fuzzy?

As Zadeh said, the term is concrete, immediate and descriptive; we all know what

it means. However, many people in the West were repelled by the word fuzzy,

because it is usually used in a negative sense.

FUZZY EXPERT SYSTEMS88



Why logic?

Fuzziness rests on fuzzy set theory, and fuzzy logic is just a small part of that

theory. However, Zadeh used the term fuzzy logic in a broader sense (Zadeh,

1965):

Fuzzy logic is determined as a set of mathematical principles for knowledge

representation based on degrees of membership rather than on crisp member-

ship of classical binary logic.

Unlike two-valued Boolean logic, fuzzy logic is multi-valued. It deals with

degrees of membership and degrees of truth. Fuzzy logic uses the continuum

of logical values between 0 (completely false) and 1 (completely true). Instead of

just black and white, it employs the spectrum of colours, accepting that things

can be partly true and partly false at the same time. As can be seen in Figure 4.1,

fuzzy logic adds a range of logical values to Boolean logic. Classical binary logic

now can be considered as a special case of multi-valued fuzzy logic.

4.2 Fuzzy sets

The concept of a set is fundamental to mathematics. However, our own language

is the supreme expression of sets. For example, car indicates the set of cars. When

we say a car, we mean one out of the set of cars.

Let X be a classical (crisp) set and x an element. Then the element x either

belongs to X ðx 2 XÞ or does not belong to X ðx 62 XÞ. That is, classical set theory

imposes a sharp boundary on this set and gives each member of the set the value

of 1, and all members that are not within the set a value of 0. This is known as

the principle of dichotomy. Let us now dispute this principle.

Consider the following classical paradoxes of logic.

1 Pythagorean School (400 BC):

Question: Does the Cretan philosopher tell the truth when he asserts that

‘All Cretans always lie’?

Boolean logic: This assertion contains a contradiction.

Fuzzy logic: The philosopher does and does not tell the truth!

2 Russell’s Paradox:

The barber of a village gives a hair cut only to those who do not cut their hair

themselves.

Figure 4.1 Range of logical values in Boolean and fuzzy logic: (a) Boolean logic; (b) multi-

valued logic
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Question: Who cuts the barber’s hair?

Boolean logic: This assertion contains a contradiction.

Fuzzy logic: The barber cuts and doesn’t cut his own hair!

Crisp set theory is governed by a logic that uses one of only two values: true or

false. This logic cannot represent vague concepts, and therefore fails to give the

answers on the paradoxes. The basic idea of the fuzzy set theory is that an

element belongs to a fuzzy set with a certain degree of membership. Thus, a

proposition is not either true or false, but may be partly true (or partly false) to

any degree. This degree is usually taken as a real number in the interval [0,1].

The classical example in the fuzzy set theory is tall men. The elements of the

fuzzy set ‘tall men’ are all men, but their degrees of membership depend on their

height, as shown in Table 4.1. Suppose, for example, Mark at 205 cm tall is given

a degree of 1, and Peter at 152 cm is given a degree of 0. All men of intermediate

height have intermediate degrees. They are partly tall. Obviously, different

people may have different views as to whether a given man should be considered

as tall. However, our candidates for tall men could have the memberships

presented in Table 4.1.

It can be seen that the crisp set asks the question, ‘Is the man tall?’ and draws

a line at, say, 180 cm. Tall men are above this height and not tall men below. In

contrast, the fuzzy set asks, ‘How tall is the man?’ The answer is the partial

membership in the fuzzy set, for example, Tom is 0.82 tall.

A fuzzy set is capable of providing a graceful transition across a boundary, as

shown in Figure 4.2.

We might consider a few other sets such as ‘very short men’, ‘short men’,

‘average men’ and ‘very tall men’.

In Figure 4.2 the horizontal axis represents the universe of discourse –

the range of all possible values applicable to a chosen variable. In our case, the

variable is the human height. According to this representation, the universe of

men’s heights consists of all tall men. However, there is often room for

Table 4.1 Degree of membership of ‘tall men’

Degree of membership

Name Height, cm Crisp Fuzzy

Chris 208 1 1.00

Mark 205 1 1.00

John 198 1 0.98

Tom 181 1 0.82

David 179 0 0.78

Mike 172 0 0.24

Bob 167 0 0.15

Steven 158 0 0.06

Bill 155 0 0.01

Peter 152 0 0.00
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discretion, since the context of the universe may vary. For example, the set of

‘tall men’ might be part of the universe of human heights or mammal heights, or

even all animal heights.

The vertical axis in Figure 4.2 represents the membership value of the fuzzy

set. In our case, the fuzzy set of ‘tall men’ maps height values into corresponding

membership values. As can be seen from Figure 4.2, David who is 179 cm tall,

which is just 2 cm less than Tom, no longer suddenly becomes a not tall (or short)

man (as he would in crisp sets). Now David and other men are gradually removed

from the set of ‘tall men’ according to the decrease of their heights.

What is a fuzzy set?

A fuzzy set can be simply defined as a set with fuzzy boundaries.

Let X be the universe of discourse and its elements be denoted as x. In classical

set theory, crisp set A of X is defined as function fAðxÞ called the characteristic

function of A

fAðxÞ : X ! 0;1; ð4:1Þ

where

fAðxÞ ¼
1; if x 2 A

0; if x 62 A

�

Figure 4.2 Crisp (a) and fuzzy (b) sets of ‘tall men’

91FUZZY SETS



This set maps universe X to a set of two elements. For any element x of

universe X, characteristic function fAðxÞ is equal to 1 if x is an element of set A,

and is equal to 0 if x is not an element of A.

In the fuzzy theory, fuzzy set A of universe X is defined by function �AðxÞ
called the membership function of set A

�AðxÞ : X ! ½0;1�; ð4:2Þ

where

�AðxÞ ¼ 1 if x is totally in A;

�AðxÞ ¼ 0 if x is not in A;

0 < �AðxÞ < 1 if x is partly in A.

This set allows a continuum of possible choices. For any element x of universe

X, membership function �AðxÞ equals the degree to which x is an element of set

A. This degree, a value between 0 and 1, represents the degree of membership,

also called membership value, of element x in set A.

How to represent a fuzzy set in a computer?

The membership function must be determined first. A number of methods

learned from knowledge acquisition can be applied here. For example, one of the

most practical approaches for forming fuzzy sets relies on the knowledge of a

single expert. The expert is asked for his or her opinion whether various elements

belong to a given set. Another useful approach is to acquire knowledge from

multiple experts. A new technique to form fuzzy sets was recently introduced. It

is based on artificial neural networks, which learn available system operation

data and then derive the fuzzy sets automatically.

Now we return to our ‘tall men’ example. After acquiring the knowledge for

men’s heights, we could produce a fuzzy set of tall men. In a similar manner, we

could obtain fuzzy sets of short and average men. These sets are shown in Figure

4.3, along with crisp sets. The universe of discourse – the men’s heights – consists

of three sets: short, average and tall men. In fuzzy logic, as you can see, a man who

is 184 cm tall is a member of the average men set with a degree of membership

of 0.1, and at the same time, he is also a member of the tall men set with a degree of

0.4. This means that a man of 184 cm tall has partial membership in multiple sets.

Now assume that universe of discourse X, also called the reference super set,

is a crisp set containing five elements X ¼ fx1; x2; x3; x4; x5g. Let A be a crisp

subset of X and assume that A consists of only two elements, A ¼ fx2; x3g. Subset

A can now be described by A ¼ fðx1;0Þ; ðx2; 1Þ; ðx3;1Þ; ðx4;0Þ; ðx5;0Þg, i.e. as a set

of pairs fðxi; �AðxiÞg, where �AðxiÞ is the membership function of element xi in

the subset A.

The question is whether �AðxÞ can take only two values, either 0 or 1, or any

value between 0 and 1. It was also the basic question in fuzzy sets examined by

Lotfi Zadeh in 1965 (Zadeh, 1965).
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If X is the reference super set and A is a subset of X, then A is said to be a fuzzy

subset of X if, and only if,

A ¼ fðx; �AðxÞg x 2 X; �AðxÞ : X ! ½0; 1� ð4:3Þ

In a special case, when X ! f0; 1g is used instead of X ! ½0;1�, the fuzzy

subset A becomes the crisp subset A.

Fuzzy and crisp sets can be also presented as shown in Figure 4.4.

Figure 4.3 Crisp (a) and fuzzy (b) sets of short, average and tall men

Figure 4.4 Representation of crisp and fuzzy subset of X
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Fuzzy subset A of the finite reference super set X can be expressed as,

A ¼ fðx1; �Aðx1Þg; fðx2; �Aðx2Þg; . . . ; fðxn; �AðxnÞg ð4:4Þ

However, it is more convenient to represent A as,

A ¼ f�Aðx1Þ=x1g; f�Aðx2Þ=x2g; . . . ; f�AðxnÞ=xng; ð4:5Þ

where the separating symbol / is used to associate the membership value with its

coordinate on the horizontal axis.

To represent a continuous fuzzy set in a computer, we need to express it as a

function and then to map the elements of the set to their degree of membership.

Typical functions that can be used are sigmoid, gaussian and pi. These functions

can represent the real data in fuzzy sets, but they also increase the time of

computation. Therefore, in practice, most applications use linear fit functions

similar to those shown in Figure 4.3. For example, the fuzzy set of tall men in

Figure 4.3 can be represented as a fit-vector,

tall men ¼ (0/180, 0.5/185, 1/190) or

tall men ¼ (0/180, 1/190)

Fuzzy sets of short and average men can be also represented in a similar manner,

short men ¼ (1/160, 0.5/165, 0/170) or

short men ¼ (1/160, 0/170)

average men ¼ (0/165, 1/175, 0/185)

4.3 Linguistic variables and hedges

At the root of fuzzy set theory lies the idea of linguistic variables. A linguistic

variable is a fuzzy variable. For example, the statement ‘John is tall’ implies that

the linguistic variable John takes the linguistic value tall. In fuzzy expert systems,

linguistic variables are used in fuzzy rules. For example,

IF wind is strong

THEN sailing is good

IF project_duration is long

THEN completion_risk is high

IF speed is slow

THEN stopping_distance is short

The range of possible values of a linguistic variable represents the universe of

discourse of that variable. For example, the universe of discourse of the linguistic
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variable speed might have the range between 0 and 220 km per hour and may

include such fuzzy subsets as very slow, slow, medium, fast, and very fast. Each

fuzzy subset also represents a linguistic value of the corresponding linguistic

variable.

A linguistic variable carries with it the concept of fuzzy set qualifiers, called

hedges. Hedges are terms that modify the shape of fuzzy sets. They include

adverbs such as very, somewhat, quite, more or less and slightly. Hedges can modify

verbs, adjectives, adverbs or even whole sentences. They are used as

. All-purpose modifiers, such as very, quite or extremely.

. Truth-values, such as quite true or mostly false.

. Probabilities, such as likely or not very likely.

. Quantifiers, such as most, several or few.

. Possibilities, such as almost impossible or quite possible.

Hedges act as operations themselves. For instance, very performs concentra-

tion and creates a new subset. From the set of tall men, it derives the subset of very

tall men. Extremely serves the same purpose to a greater extent.

An operation opposite to concentration is dilation. It expands the set. More or

less performs dilation; for example, the set of more or less tall men is broader than

the set of tall men.

Hedges are useful as operations, but they can also break down continuums

into fuzzy intervals. For example, the following hedges could be used to describe

temperature: very cold, moderately cold, slightly cold, neutral, slightly hot, moderately

hot and very hot. Obviously these fuzzy sets overlap. Hedges help to reflect human

thinking, since people usually cannot distinguish between slightly hot and

moderately hot.

Figure 4.5 illustrates an application of hedges. The fuzzy sets shown previ-

ously in Figure 4.3 are now modified mathematically by the hedge very.

Consider, for example, a man who is 185 cm tall. He is a member of the tall

men set with a degree of membership of 0.5. However, he is also a member of the

set of very tall men with a degree of 0.15, which is fairly reasonable.

Figure 4.5 Fuzzy sets with very hedge
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Let us now consider the hedges often used in practical applications.

. Very, the operation of concentration, as we mentioned above, narrows a set

down and thus reduces the degree of membership of fuzzy elements. This

operation can be given as a mathematical square:

�
very
A ðxÞ ¼ ½�AðxÞ�2 ð4:6Þ

Hence, if Tom has a 0.86 membership in the set of tall men, he will have a

0.7396 membership in the set of very tall men.

. Extremely serves the same purpose as very, but does it to a greater extent. This

operation can be performed by raising �AðxÞ to the third power:

�
extremely
A ðxÞ ¼ ½�AðxÞ�3 ð4:7Þ

If Tom has a 0.86 membership in the set of tall men, he will have a 0.7396

membership in the set of very tall men and 0.6361 membership in the set of

extremely tall men.

. Very very is just an extension of concentration. It can be given as a square of

the operation of concentration:

�
very very
A ðxÞ ¼ ½�very

A ðxÞ�2 ¼ ½�AðxÞ�4 ð4:8Þ

For example, Tom, with a 0.86 membership in the tall men set and a 0.7396

membership in the very tall men set, will have a membership of 0.5470 in the

set of very very tall men.

. More or less, the operation of dilation, expands a set and thus increases the

degree of membership of fuzzy elements. This operation is presented as:

�more or less
A ðxÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
�AðxÞ

p
ð4:9Þ

Hence, if Tom has a 0.86 membership in the set of tall men, he will have a

0.9274 membership in the set of more or less tall men.

. Indeed, the operation of intensification, intensifies the meaning of the whole

sentence. It can be done by increasing the degree of membership above 0.5

and decreasing those below 0.5. The hedge indeed may be given by either:

�indeed
A ðxÞ ¼ 2½�AðxÞ�2 if 04�AðxÞ40:5 ð4:10Þ

or

�indeed
A ðxÞ ¼ 1 � 2½1 � �AðxÞ�2 if 0:5 < �AðxÞ41 ð4:11Þ

If Tom has a 0.86 membership in the set of tall men, he can have a 0.9608

membership in the set of indeed tall men. In contrast, Mike, who has a

0.24 membership in tall men set, will have a 0.1152 membership in the indeed

tall men set.
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Mathematical and graphical representation of hedges are summarised in

Table 4.2.

4.4 Operations of fuzzy sets

The classical set theory developed in the late 19th century by Georg Cantor

describes how crisp sets can interact. These interactions are called operations.

Table 4.2 Representation of hedges in fuzzy logic

Hedge Mathematical expression Graphical representation

A little ½�AðxÞ�1:3

Slightly ½�AðxÞ�1:7

Very ½�AðxÞ�2

Extremely ½�AðxÞ�3

Very very ½�AðxÞ�4

More or less
ffiffiffiffiffiffiffiffiffiffiffiffi
�AðxÞ

p

Somewhat
ffiffiffiffiffiffiffiffiffiffiffiffi
�AðxÞ

p

Indeed 2½�AðxÞ�2 if 04�A 40:5

1 � 2½1 � �AðxÞ�2 if 0:5 < �A 41

97OPERATIONS OF FUZZY SETS



We look at four of them: complement, containment, intersection and union.

These operations are presented graphically in Figure 4.6. Let us compare

operations of classical and fuzzy sets.

Complement

. Crisp sets: Who does not belong to the set?

. Fuzzy sets: How much do elements not belong to the set?

The complement of a set is an opposite of this set. For example, if we have the set

of tall men, its complement is the set of NOT tall men. When we remove the tall

men set from the universe of discourse, we obtain the complement. If A is the

fuzzy set, its complement :A can be found as follows:

�:AðxÞ ¼ 1 � �AðxÞ ð4:12Þ

For example, if we have a fuzzy set of tall men, we can easily obtain the fuzzy set

of NOT tall men:

tall men ¼ ð0=180; 0:25=182:5;0:5=185;0:75=187:5;1=190Þ
NOT tall men ¼ ð1=180; 0:75=182:5;0:5=185;0:25=187:5;0=190Þ

Containment

. Crisp sets: Which sets belong to which other sets?

. Fuzzy sets: Which sets belong to other sets?

Figure 4.6 Operations on classical sets

FUZZY EXPERT SYSTEMS98



Similar to a Chinese box or Russian doll, a set can contain other sets. The smaller

set is called the subset. For example, the set of tall men contains all tall men.

Therefore, very tall men is a subset of tall men. However, the tall men set is just a

subset of the set of men. In crisp sets, all elements of a subset entirely belong to

a larger set and their membership values are equal to 1. In fuzzy sets, however,

each element can belong less to the subset than to the larger set. Elements of the

fuzzy subset have smaller memberships in it than in the larger set.

tall men ¼ ð0=180;0:25=182:5;0:50=185;0:75=187:5;1=190Þ
very tall men ¼ ð0=180;0:06=182:5;0:25=185;0:56=187:5;1=190Þ

Intersection

. Crisp sets: Which element belongs to both sets?

. Fuzzy sets: How much of the element is in both sets?

In classical set theory, an intersection between two sets contains the elements

shared by these sets. If we have, for example, the set of tall men and the set of fat

men, the intersection is the area where these sets overlap, i.e. Tom is in the

intersection only if he is tall AND fat. In fuzzy sets, however, an element may

partly belong to both sets with different memberships. Thus, a fuzzy intersection

is the lower membership in both sets of each element.

The fuzzy operation for creating the intersection of two fuzzy sets A and B on

universe of discourse X can be obtained as:

�A\BðxÞ ¼ min ½�AðxÞ; �BðxÞ� ¼ �AðxÞ \ �BðxÞ; where x 2 X ð4:13Þ

Consider, for example, the fuzzy sets of tall and average men:

tall men ¼ ð0=165; 0=175;0:0=180;0:25=182:5;0:5=185;1=190Þ
average men ¼ ð0=165; 1=175;0:5=180;0:25=182:5;0:0=185;0=190Þ

According to Eq. (4.13), the intersection of these two sets is

tall men \ average men ¼ ð0=165;0=175;0=180;0:25=182:5;0=185;0=190Þ

or

tall men \ average men ¼ ð0=180;0:25=182:5;0=185Þ

This solution is represented graphically in Figure 4.3.
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Union

. Crisp sets: Which element belongs to either set?

. Fuzzy sets: How much of the element is in either set?

The union of two crisp sets consists of every element that falls into either set. For

example, the union of tall men and fat men contains all men who are tall OR fat,

i.e. Tom is in the union since he is tall, and it does not matter whether he is fat or

not. In fuzzy sets, the union is the reverse of the intersection. That is, the union

is the largest membership value of the element in either set.

The fuzzy operation for forming the union of two fuzzy sets A and B on

universe X can be given as:

�A[BðxÞ ¼ max ½�AðxÞ; �BðxÞ� ¼ �AðxÞ [ �BðxÞ; where x 2 X ð4:14Þ

Consider again the fuzzy sets of tall and average men:

tall men ¼ ð0=165; 0=175;0:0=180;0:25=182:5;0:5=185;1=190Þ
average men ¼ ð0=165; 1=175;0:5=180;0:25=182:5;0:0=185;0=190Þ

According to Eq. (4.14), the union of these two sets is

tall men [ average men ¼ ð0=165;1=175;0:5=180;0:25=182:5;0:5=185;1=190Þ

Diagrams for fuzzy set operations are shown in Figure 4.7.

Crisp and fuzzy sets have the same properties; crisp sets can be considered as

just a special case of fuzzy sets. Frequently used properties of fuzzy sets are

described below.

Commutativity

A [ B ¼ B [ A

A \ B ¼ B \ A

Example:

tall men OR short men ¼ short men OR tall men

tall men AND short men ¼ short men AND tall men

Associativity

A [ ðB [ CÞ ¼ ðA [ BÞ [ C

A \ ðB \ CÞ ¼ ðA \ BÞ \ C
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Example:

tall men OR (short men OR average men) ¼ (tall men OR short men) OR

average men

tall men AND (short men AND average men) ¼ (tall men AND short men) AND

average men

Distributivity

A [ ðB \ CÞ ¼ ðA [ BÞ \ ðA [ CÞ
A \ ðB [ CÞ ¼ ðA \ BÞ [ ðA \ CÞ

Example:

tall men OR (short men AND average men) ¼ (tall men OR short men) AND

(tall men OR average men)

tall men AND (short men OR average men) ¼ (tall men AND short men) OR

(tall men AND average men)

Idempotency

A [ A ¼ A

A \ A ¼ A

Figure 4.7 Operations of fuzzy sets
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Example:

tall men OR tall men ¼ tall men

tall men AND tall men ¼ tall men

Identity

A [ =O ¼ A

A \ X ¼ A

A \ =O ¼ =O

A [ X ¼ X

Example:

tall men OR undefined ¼ tall men

tall men AND unknown ¼ tall men

tall men AND undefined ¼ undefined

tall men OR unknown ¼ unknown

where undefined is an empty (null) set, the set having all degree of member-

ships equal to 0, and unknown is a set having all degree of memberships equal

to 1.

Involution

:ð:AÞ ¼ A

Example:

NOT (NOT tall men) ¼ tall men

Transitivity

If ðA � BÞ \ ðB � CÞ then A � C

Every set contains the subsets of its subsets.

Example:

IF (extremely tall men � very tall men) AND (very tall men � tall men)

THEN (extremely tall men � tall men)

De Morgan’s Laws

:ðA \ BÞ ¼ :A [ :B

:ðA [ BÞ ¼ :A \ :B
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Example:

NOT (tall men AND short men) ¼ NOT tall men OR NOT short men

NOT (tall men OR short men) ¼ NOT tall men AND NOT short men

Using fuzzy set operations, their properties and hedges, we can easily obtain a

variety of fuzzy sets from the existing ones. For example, if we have fuzzy set A

of tall men and fuzzy set B of short men, we can derive fuzzy set C of not very tall

men and not very short men or even set D of not very very tall and not very very short

men from the following operations:

�CðxÞ ¼ ½1 � �AðxÞ2� \ ½1 � ð�BðxÞ2�
�DðxÞ ¼ ½1 � �AðxÞ4� \ ½1 � ð�BðxÞ4�

Generally, we apply fuzzy operations and hedges to obtain fuzzy sets which

can represent linguistic descriptions of our natural language.

4.5 Fuzzy rules

In 1973, Lotfi Zadeh published his second most influential paper (Zadeh, 1973).

This paper outlined a new approach to analysis of complex systems, in which

Zadeh suggested capturing human knowledge in fuzzy rules.

What is a fuzzy rule?

A fuzzy rule can be defined as a conditional statement in the form:

IF x is A

THEN y is B

where x and y are linguistic variables; and A and B are linguistic values

determined by fuzzy sets on the universe of discourses X and Y, respectively.

What is the difference between classical and fuzzy rules?

A classical IF-THEN rule uses binary logic, for example,

Rule: 1

IF speed is > 100

THEN stopping_distance is long

Rule: 2

IF speed is < 40

THEN stopping_distance is short

The variable speed can have any numerical value between 0 and 220 km/h, but

the linguistic variable stopping_distance can take either value long or short. In
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other words, classical rules are expressed in the black-and-white language of

Boolean logic. However, we can also represent the stopping distance rules in a

fuzzy form:

Rule: 1

IF speed is fast

THEN stopping_distance is long

Rule: 2

IF speed is slow

THEN stopping_distance is short

Here the linguistic variable speed also has the range (the universe of discourse)

between 0 and 220 km/h, but this range includes fuzzy sets, such as slow, medium

and fast. The universe of discourse of the linguistic variable stopping_distance can

be between 0 and 300 m and may include such fuzzy sets as short, medium and

long. Thus fuzzy rules relate to fuzzy sets.

Fuzzy expert systems merge the rules and consequently cut the number of

rules by at least 90 per cent.

How to reason with fuzzy rules?

Fuzzy reasoning includes two distinct parts: evaluating the rule antecedent (the

IF part of the rule) and implication or applying the result to the consequent

(the THEN part of the rule).

In classical rule-based systems, if the rule antecedent is true, then the

consequent is also true. In fuzzy systems, where the antecedent is a fuzzy

statement, all rules fire to some extent, or in other words they fire partially. If

the antecedent is true to some degree of membership, then the consequent is

also true to that same degree.

Consider, for example, two fuzzy sets, ‘tall men’ and ‘heavy men’ represented

in Figure 4.8.

Figure 4.8 Fuzzy sets of tall and heavy men
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These fuzzy sets provide the basis for a weight estimation model. The model

is based on a relationship between a man’s height and his weight, which is

expressed as a single fuzzy rule:

IF height is tall

THEN weight is heavy

The value of the output or a truth membership grade of the rule consequent

can be estimated directly from a corresponding truth membership grade in the

antecedent (Cox, 1999). This form of fuzzy inference uses a method called

monotonic selection. Figure 4.9 shows how various values of men’s weight are

derived from different values for men’s height.

Can the antecedent of a fuzzy rule have multiple parts?

As a production rule, a fuzzy rule can have multiple antecedents, for example:

IF project_duration is long

AND project_staffing is large

AND project_funding is inadequate

THEN risk is high

IF service is excellent

OR food is delicious

THEN tip is generous

All parts of the antecedent are calculated simultaneously and resolved in a

single number, using fuzzy set operations considered in the previous section.

Can the consequent of a fuzzy rule have multiple parts?

The consequent of a fuzzy rule can also include multiple parts, for instance:

IF temperature is hot

THEN hot_water is reduced;

cold_water is increased

Figure 4.9 Monotonic selection of values for man weight
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In this case, all parts of the consequent are affected equally by the antecedent.

In general, a fuzzy expert system incorporates not one but several rules that

describe expert knowledge and play off one another. The output of each rule is a

fuzzy set, but usually we need to obtain a single number representing the expert

system output. In other words, we want to get a precise solution, not a fuzzy one.

How are all these output fuzzy sets combined and transformed into a

single number?

To obtain a single crisp solution for the output variable, a fuzzy expert system

first aggregates all output fuzzy sets into a single output fuzzy set, and then

defuzzifies the resulting fuzzy set into a single number. In the next section we

will see how the whole process works from the beginning to the end.

4.6 Fuzzy inference

Fuzzy inference can be defined as a process of mapping from a given input to an

output, using the theory of fuzzy sets.

4.6.1 Mamdani-style inference

The most commonly used fuzzy inference technique is the so-called Mamdani

method. In 1975, Professor Ebrahim Mamdani of London University built one

of the first fuzzy systems to control a steam engine and boiler combination

(Mamdani and Assilian, 1975). He applied a set of fuzzy rules supplied by

experienced human operators.

The Mamdani-style fuzzy inference process is performed in four steps:

fuzzification of the input variables, rule evaluation, aggregation of the rule

outputs, and finally defuzzification.

To see how everything fits together, we examine a simple two-input one-

output problem that includes three rules:

Rule: 1 Rule: 1

IF x is A3 IF project_funding is adequate

OR y is B1 OR project_staffing is small

THEN z is C1 THEN risk is low

Rule: 2 Rule: 2

IF x is A2 IF project_funding is marginal

AND y is B2 AND project_staffing is large

THEN z is C2 THEN risk is normal

Rule: 3 Rule: 3

IF x is A1 IF project_funding is inadequate

THEN z is C3 THEN risk is high

where x, y and z (project funding, project staffing and risk) are linguistic vari-

ables; A1, A2 and A3 (inadequate, marginal and adequate) are linguistic values
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determined by fuzzy sets on universe of discourse X (project funding); B1 and B2

(small and large) are linguistic values determined by fuzzy sets on universe of

discourse Y (project staffing); C1, C2 and C3 (low, normal and high) are linguistic

values determined by fuzzy sets on universe of discourse Z (risk).

The basic structure of Mamdani-style fuzzy inference for our problem is

shown in Figure 4.10.

Step 1: Fuzzification

The first step is to take the crisp inputs, x1 and y1 (project funding and

project staffing), and determine the degree to which these inputs belong

to each of the appropriate fuzzy sets.

What is a crisp input and how is it determined?

The crisp input is always a numerical value limited to the universe of

discourse. In our case, values of x1 and y1 are limited to the universe

of discourses X and Y, respectively. The ranges of the universe of

discourses can be determined by expert judgements. For instance, if we

need to examine the risk involved in developing the ‘fuzzy’ project,

we can ask the expert to give numbers between 0 and 100 per cent that

represent the project funding and the project staffing, respectively. In

other words, the expert is required to answer to what extent the project

funding and the project staffing are really adequate. Of course, various

fuzzy systems use a variety of different crisp inputs. While some of the

inputs can be measured directly (height, weight, speed, distance,

temperature, pressure etc.), some of them can be based only on expert

estimate.

Once the crisp inputs, x1 and y1, are obtained, they are fuzzified

against the appropriate linguistic fuzzy sets. The crisp input x1 (project

funding rated by the expert as 35 per cent) corresponds to the member-

ship functions A1 and A2 (inadequate and marginal) to the degrees of 0.5

and 0.2, respectively, and the crisp input y1 (project staffing rated as 60

per cent) maps the membership functions B1 and B2 (small and large) to

the degrees of 0.1 and 0.7, respectively. In this manner, each input is

fuzzified over all the membership functions used by the fuzzy rules.

Step 2: Rule evaluation

The second step is to take the fuzzified inputs, �ðx¼A1Þ ¼ 0:5, �ðx¼A2Þ ¼
0:2, �ðy¼B1Þ ¼ 0:1 and �ðy¼B2Þ ¼ 0:7, and apply them to the antecedents

of the fuzzy rules. If a given fuzzy rule has multiple antecedents, the

fuzzy operator (AND or OR) is used to obtain a single number that

represents the result of the antecedent evaluation. This number (the

truth value) is then applied to the consequent membership function.

To evaluate the disjunction of the rule antecedents, we use the OR

fuzzy operation. Typically, fuzzy expert systems make use of the

classical fuzzy operation union (4.14) shown in Figure 4.10 (Rule 1):

�A[BðxÞ ¼ max ½�AðxÞ; �BðxÞ�
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Figure 4.10 The basic structure of Mamdani-style fuzzy inference
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However, the OR operation can be easily customised if necessary. For

example, the MATLAB Fuzzy Logic Toolbox has two built-in OR

methods: max and the probabilistic OR method, probor. The probabil-

istic OR, also known as the algebraic sum, is calculated as:

�A[BðxÞ ¼ probor ½�AðxÞ; �BðxÞ� ¼ �AðxÞ þ �BðxÞ � �AðxÞ � �BðxÞ ð4:15Þ

Similarly, in order to evaluate the conjunction of the rule ante-

cedents, we apply the AND fuzzy operation intersection (4.13) also

shown in Figure 4.10 (Rule 2):

�A\BðxÞ ¼ min ½�AðxÞ; �BðxÞ�

The Fuzzy Logic Toolbox also supports two AND methods: min and the

product, prod. The product is calculated as:

�A\BðxÞ ¼ prod ½�AðxÞ; �BðxÞ� ¼ �AðxÞ � �BðxÞ ð4:16Þ

Do different methods of the fuzzy operations produce different results?

Fuzzy researchers have proposed and applied several approaches to

execute AND and OR fuzzy operators (Cox, 1999) and, of course,

different methods may lead to different results. Most fuzzy packages

also allow us to customise the AND and OR fuzzy operations and a user

is required to make the choice.

Let us examine our rules again.

Rule: 1

IF x is A3 (0.0)

OR y is B1 (0.1)

THEN z is C1 (0.1)

�C1ðzÞ ¼ max ½�A3ðxÞ; �B1ðyÞ� ¼ max ½0:0;0:1� ¼ 0:1

or

�C1ðzÞ ¼ probor ½�A3ðxÞ; �B1ðyÞ� ¼ 0:0 þ 0:1 � 0:0 � 0:1 ¼ 0:1

Rule: 2

IF x is A2 (0.2)

AND y is B2 (0.7)

THEN z is C2 (0.2)

�C2ðzÞ ¼ min ½�A2ðxÞ; �B2ðyÞ� ¼ min ½0:2;0:7� ¼ 0:2

or

�C2ðzÞ ¼ prod ½�A2ðxÞ; �B2ðyÞ� ¼ 0:2 � 0:7 ¼ 0:14

Thus, Rule 2 can be also represented as shown in Figure 4.11.

Now the result of the antecedent evaluation can be applied to the

membership function of the consequent. In other words, the con-

sequent membership function is clipped or scaled to the level of the

truth value of the rule antecedent.
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What do we mean by ‘clipped or scaled’?

The most common method of correlating the rule consequent with the

truth value of the rule antecedent is to simply cut the consequent

membership function at the level of the antecedent truth. This method

is called clipping or correlation minimum. Since the top of the

membership function is sliced, the clipped fuzzy set loses some informa-

tion. However, clipping is still often preferred because it involves less

complex and faster mathematics, and generates an aggregated output

surface that is easier to defuzzify.

While clipping is a frequently used method, scaling or correlation

product offers a better approach for preserving the original shape of

the fuzzy set. The original membership function of the rule consequent

is adjusted by multiplying all its membership degrees by the truth value

of the rule antecedent. This method, which generally loses less

information, can be very useful in fuzzy expert systems.

Clipped and scaled membership functions are illustrated in

Figure 4.12.

Step 3: Aggregation of the rule outputs

Aggregation is the process of unification of the outputs of all rules.

In other words, we take the membership functions of all rule conse-

quents previously clipped or scaled and combine them into a single

fuzzy set. Thus, the input of the aggregation process is the list of

clipped or scaled consequent membership functions, and the output is

one fuzzy set for each output variable. Figure 4.10 shows how the

output of each rule is aggregated into a single fuzzy set for the overall

fuzzy output.

Figure 4.11 The AND product fuzzy operation

Figure 4.12 Clipped (a) and scaled (b) membership functions
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Step 4: Defuzzification

The last step in the fuzzy inference process is defuzzification. Fuzziness

helps us to evaluate the rules, but the final output of a fuzzy system has

to be a crisp number. The input for the defuzzification process is the

aggregate output fuzzy set and the output is a single number.

How do we defuzzify the aggregate fuzzy set?

There are several defuzzification methods (Cox, 1999), but probably the

most popular one is the centroid technique. It finds the point where a

vertical line would slice the aggregate set into two equal masses.

Mathematically this centre of gravity (COG) can be expressed as

COG ¼

Z b

a

�AðxÞxdx

Z b

a

�AðxÞdx

ð4:17Þ

As Figure 4.13 shows, a centroid defuzzification method finds a

point representing the centre of gravity of the fuzzy set, A, on the

interval, ab.

In theory, the COG is calculated over a continuum of points in

the aggregate output membership function, but in practice, a reason-

able estimate can be obtained by calculating it over a sample of

points, as shown in Figure 4.13. In this case, the following formula is

applied:

COG ¼

Xb

x¼a

�AðxÞx

Xb

x¼a

�AðxÞ
ð4:18Þ

Let us now calculate the centre of gravity for our problem. The

solution is presented in Figure 4.14.

Figure 4.13 The centroid method of defuzzification
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COG¼ ð0þ10þ20Þ�0:1þð30þ40þ50þ60Þ�0:2þð70þ80þ90þ100Þ�0:5

0:1þ0:1þ0:1þ0:2þ0:2þ0:2þ0:2þ0:5þ0:5þ0:5þ0:5

¼ 67:4

Thus, the result of defuzzification, crisp output z1, is 67.4. It means,

for instance, that the risk involved in our ‘fuzzy’ project is 67.4 per

cent.

4.6.2 Sugeno-style inference

Mamdani-style inference, as we have just seen, requires us to find the centroid of

a two-dimensional shape by integrating across a continuously varying function.

In general, this process is not computationally efficient.

Could we shorten the time of fuzzy inference?

We can use a single spike, a singleton, as the membership function of the rule

consequent. This method was first introduced by Michio Sugeno, the ‘Zadeh of

Japan’, in 1985 (Sugeno, 1985). A singleton, or more precisely a fuzzy singleton,

is a fuzzy set with a membership function that is unity at a single particular point

on the universe of discourse and zero everywhere else.

Sugeno-style fuzzy inference is very similar to the Mamdani method. Sugeno

changed only a rule consequent. Instead of a fuzzy set, he used a mathematical

function of the input variable. The format of the Sugeno-style fuzzy rule is

IF x is A

AND y is B

THEN z is f ðx; yÞ

where x, y and z are linguistic variables; A and B are fuzzy sets on universe of

discourses X and Y, respectively; and f ðx; yÞ is a mathematical function.

Figure 4.14 Defuzzifying the solution variable’s fuzzy set
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Figure 4.15 The basic structure of Sugeno-style fuzzy inference
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The most commonly used zero-order Sugeno fuzzy model applies fuzzy rules

in the following form:

IF x is A

AND y is B

THEN z is k

where k is a constant.

In this case, the output of each fuzzy rule is constant. In other words, all

consequent membership functions are represented by singleton spikes. Figure

4.15 shows the fuzzy inference process for a zero-order Sugeno model. Let us

compare Figure 4.15 with Figure 4.10. The similarity of Sugeno and Mamdani

methods is quite noticeable. The only distinction is that rule consequents are

singletons in Sugeno’s method.

How is the result, crisp output, obtained?

As you can see from Figure 4.15, the aggregation operation simply includes all

the singletons. Now we can find the weighted average (WA) of these singletons:

WA ¼ �ðk1Þ� k1þ�ðk2Þ� k2þ�ðk3Þ� k3

�ðk1Þþ�ðk2Þþ�ðk3Þ ¼ 0:1�20þ0:2�50þ0:5�80

0:1þ0:2þ0:5
¼ 65

Thus, a zero-order Sugeno system might be sufficient for our problem’s needs.

Fortunately, singleton output functions satisfy the requirements of a given

problem quite often.

How do we make a decision on which method to apply – Mamdani or

Sugeno?

The Mamdani method is widely accepted for capturing expert knowledge. It

allows us to describe the expertise in more intuitive, more human-like manner.

However, Mamdani-type fuzzy inference entails a substantial computational

burden. On the other hand, the Sugeno method is computationally effective and

works well with optimisation and adaptive techniques, which makes it very

attractive in control problems, particularly for dynamic nonlinear systems.

4.7 Building a fuzzy expert system

To illustrate the design of a fuzzy expert system, we will consider a problem of

operating a service centre of spare parts (Turksen et al., 1992).

A service centre keeps spare parts and repairs failed ones. A customer brings a

failed item and receives a spare of the same type. Failed parts are repaired, placed

on the shelf, and thus become spares. If the required spare is available on the

shelf, the customer takes it and leaves the service centre. However, if there is no

spare on the shelf, the customer has to wait until the needed item becomes

available. The objective here is to advise a manager of the service centre on

certain decision policies to keep the customers satisfied.
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A typical process in developing the fuzzy expert system incorporates the

following steps:

1. Specify the problem and define linguistic variables.

2. Determine fuzzy sets.

3. Elicit and construct fuzzy rules.

4. Encode the fuzzy sets, fuzzy rules and procedures to perform fuzzy inference

into the expert system.

5. Evaluate and tune the system.

Step 1: Specify the problem and define linguistic variables

The first, and probably the most important, step in building any expert

system is to specify the problem. We need to describe our problem in

terms of knowledge engineering. In other words, we need to determine

problem input and output variables and their ranges.

For our problem, there are four main linguistic variables: average

waiting time (mean delay) m, repair utilisation factor of the service

centre �, number of servers s, and initial number of spare parts n.

The customer’s average waiting time, m, is the most important

criterion of the service centre’s performance. The actual mean delay

in service should not exceed the limits acceptable to customers.

The repair utilisation factor of the service centre, �, is the ratio of the

customer arrival rate, �, to the customer departure rate, �. Magnitudes

of � and � indicate the rates of an item’s failure (failures per unit time)

and repair (repairs per unit time), respectively. Apparently, the

repair rate is proportional to the number of servers, s. To increase

the productivity of the service centre, its manager will try to keep the

repair utilisation factor as high as possible.

The number of servers, s, and the initial number of spares, n, directly

affect the customer’s average waiting time, and thus have a major

impact on the centre’s performance. By increasing s and n, we achieve

lower values of the mean delay, but, at the same time we increase the

costs of employing new servers, building up the number of spares and

expanding the inventory capacities of the service centre for additional

spares.

Let us determine the initial number of spares n, given the customer’s

mean delay m, number of servers s, and repair utilisation factor, �.

Thus, in the decision model considered here, we have three inputs –

m, s and �, and one output – n. In other words, a manager of the service

centre wants to determine the number of spares required to maintain

the actual mean delay in customer service within an acceptable range.

Now we need to specify the ranges of our linguistic variables.

Suppose we obtain the results shown in Table 4.3 where the intervals

for m, s and n are normalised to be within the range of ½0; 1� by dividing

base numerical values by the corresponding maximum magnitudes.
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Note, that for the customer mean delay m, we consider only three

linguistic values – Very Short, Short and Medium because other values

such as Long and Very Long are simply not practical. A manager of the

service centre cannot afford to keep customers waiting longer than a

medium time.

In practice, all linguistic variables, linguistic values and their ranges

are usually chosen by the domain expert.

Step 2: Determine fuzzy sets

Fuzzy sets can have a variety of shapes. However, a triangle or a trapezoid

can often provide an adequate representation of the expert knowledge,

and at the same time significantly simplifies the process of computation.

Figures 4.16 to 4.19 show the fuzzy sets for all linguistic variables

used in our problem. As you may notice, one of the key points here is to

maintain sufficient overlap in adjacent fuzzy sets for the fuzzy system

to respond smoothly.

Table 4.3 Linguistic variables and their ranges

Linguistic variable: Mean delay, m

Linguistic value Notation Numerical range (normalised)

Very Short VS [0, 0.3]

Short S [0.1, 0.5]

Medium M [0.4, 0.7]

Linguistic variable: Number of servers, s

Linguistic value Notation Numerical range (normalised)

Small S [0, 0.35]

Medium M [0.30, 0.70]

Large L [0.60, 1]

Linguistic variable: Repair utilisation factor, q

Linguistic value Notation Numerical range

Low L [0, 0.6]

Medium M [0.4, 0.8]

High H [0.6, 1]

Linguistic variable: Number of spares, n

Linguistic value Notation Numerical range (normalised)

Very Small VS [0, 0.30]

Small S [0, 0.40]

Rather Small RS [0.25, 0.45]

Medium M [0.30, 0.70]

Rather Large RL [0.55, 0.75]

Large L [0.60, 1]

Very Large VL [0.70, 1]
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Figure 4.16 Fuzzy sets of mean delay m

Figure 4.17 Fuzzy sets of number of servers s

Figure 4.18 Fuzzy sets of repair utilisation factor �

Figure 4.19 Fuzzy sets of number of spares n
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Step 3: Elicit and construct fuzzy rules

Next we need to obtain fuzzy rules. To accomplish this task, we might

ask the expert to describe how the problem can be solved using the

fuzzy linguistic variables defined previously.

Required knowledge also can be collected from other sources such as

books, computer databases, flow diagrams and observed human behav-

iour. In our case, we could apply rules provided in the research paper

(Turksen et al., 1992).

There are three input and one output variables in our example. It is

often convenient to represent fuzzy rules in a matrix form. A two-by-

one system (two inputs and one output) is depicted as an M � N matrix

of input variables. The linguistic values of one input variable form the

horizontal axis and the linguistic values of the other input variable

form the vertical axis. At the intersection of a row and a column lies

the linguistic value of the output variable. For a three-by-one system

(three inputs and one output), the representation takes the shape of an

M � N � K cube. This form of representation is called a fuzzy associa-

tive memory (FAM).

Let us first make use of a very basic relation between the repair

utilisation factor �, and the number of spares n, assuming that other

input variables are fixed. This relation can be expressed in the following

form: if � increases, then n will not decrease. Thus we could write the

following three rules:

1. If (utilisation_factor is L) then (number_of_spares is S)
2. If (utilisation_factor is M) then (number_of_spares is M)
3. If (utilisation_factor is H) then (number_of_spares is L)

Now we can develop the 3 � 3 FAM that will represent the rest of

the rules in a matrix form. The results of this effort are shown in

Figure 4.20.

Meanwhile, a detailed analysis of the service centre operation,

together with an ‘expert touch’ (Turksen et al., 1992), may enable us

to derive 27 rules that represent complex relationships between all

variables used in the expert system. Table 4.4 contains these rules and

Figure 4.21 shows the cube ð3 � 3 � 3Þ FAM representation.

Figure 4.20 The square FAM representation
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First we developed 12 ð3 þ 3 � 3Þ rules, but then we obtained 27

ð3 � 3 � 3Þ rules. If we implement both schemes, we can compare

results; only the system’s performance can tell us which scheme is

better.

Rule Base 1
1. If (utilisation_factor is L) then (number_of_spares is S)
2. If (utilisation_factor is M) then (number_of_spares is M)
3. If (utilisation_factor is H) then (number_of_spares is L)

4. If (mean_delay is VS) and (number_of_servers is S)
then (number_of_spares is VL)

5. If (mean_delay is S) and (number_of_servers is S)
then (number_of_spares is L)

Table 4.4 The rule table

Rule m s � n Rule m s � n Rule m s � n

1 VS S L VS 10 VS S M S 19 VS S H VL

2 S S L VS 11 S S M VS 20 S S H L

3 M S L VS 12 M S M VS 21 M S H M

4 VS M L VS 13 VS M M RS 22 VS M H M

5 S M L VS 14 S M M S 23 S M H M

6 M M L VS 15 M M M VS 24 M M H S

7 VS L L S 16 VS L M M 25 VS L H RL

8 S L L S 17 S L M RS 26 S L H M

9 M L L VS 18 M L M S 27 M L H RS

Figure 4.21 Cube FAM and sliced cube FAM representations
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6. If (mean_delay is M) and (number_of_servers is S)
then (number_of_spares is M)

7. If (mean_delay is VS) and (number_of_servers is M)
then (number_of_spares is RL)

8. If (mean_delay is S) and (number_of_servers is M)
then (number_of_spares is RS)

9. If (mean_delay is M) and (number_of_servers is M)
then (number_of_spares is S)

10. If (mean_delay is VS) and (number_of_servers is L)
then (number_of_spares is M)

11. If (mean_delay is S) and (number_of_servers is L)
then (number_of_spares is S)

12. If (mean_delay is M) and (number_of_servers is L)
then (number_of_spares is VS)

Rule Base 2
1. If (mean_delay is VS) and (number_of_servers is S)

and (utilisation_factor is L) then (number_of_spares is VS)
2. If (mean_delay is S) and (number_of_servers is S)

and (utilisation_factor is L) then (number_of_spares is VS)
3. If (mean_delay is M) and (number_of_servers is S)

and (utilisation_factor is L) then (number_of_spares is VS)
4. If (mean_delay is VS) and (number_of_servers is M)

and (utilisation_factor is L) then (number_of_spares is VS)
5. If (mean_delay is S) and (number_of_servers is M)

and (utilisation_factor is L) then (number_of_spares is VS)
6. If (mean_delay is M) and (number_of_servers is M)

and (utilisation_factor is L) then (number_of_spares is VS)
7. If (mean_delay is VS) and (number_of_servers is L)

and (utilisation_factor is L) then (number_of_spares is S)
8. If (mean_delay is S) and (number_of_servers is L)

and (utilisation_factor is L) then (number_of_spares is S)
9. If (mean_delay is M) and (number_of_servers is L)

and (utilisation_factor is L) then (number_of_spares is VS)

10. If (mean_delay is VS) and (number_of_servers is S)
and (utilisation_factor is M) then (number_of_spares is S)

11. If (mean_delay is S) and (number_of_servers is S)
and (utilisation_factor is M) then (number_of_spares is VS)

12. If (mean_delay is M) and (number_of_servers is S)
and (utilisation_factor is M) then (number_of_spares is VS)

13. If (mean_delay is VS) and (number_of_servers is M)
and (utilisation_factor is M) then (number_of_spares is RS)

14. If (mean_delay is S) and (number_of_servers is M)
and (utilisation_factor is M) then (number_of_spares is S)

15. If (mean_delay is M) and (number_of_servers is M)
and (utilisation_factor is M) then (number_of_spares is VS)

16. If (mean_delay is VS) and (number_of_servers is L)
and (utilisation_factor is M) then (number_of_spares is M)

17. If (mean_delay is S) and (number_of_servers is L)
and (utilisation_factor is M) then (number_of_spares is RS)

18. If (mean_delay is M) and (number_of_servers is L)
and (utilisation_factor is M) then (number_of_spares is S)

19. If (mean_delay is VS) and (number_of_servers is S)
and (utilisation_factor is H) then (number_of_spares is VL)

FUZZY EXPERT SYSTEMS120



20. If (mean_delay is S) and (number_of_servers is S)
and (utilisation_factor is H) then (number_of_spares is L)

21. If (mean_delay is M) and (number_of_servers is S)
and (utilisation_factor is H) then (number_of_spares is M)

22. If (mean_delay is VS) and (number_of_servers is M)
and (utilisation_factor is H) then (number_of_spares is M)

23. If (mean_delay is S) and (number_of_servers is M)
and (utilisation_factor is H) then (number_of_spares is M)

24. If (mean_delay is M) and (number_of_servers is M)
and (utilisation_factor is H) then (number_of_spares is S)

25. If (mean_delay is VS) and (number_of_servers is L)
and (utilisation_factor is H) then (number_of_spares is RL)

26. If (mean_delay is S) and (number_of_servers is L)
and (utilisation_factor is H) then (number_of_spares is M)

27. If (mean_delay is M) and (number_of_servers is L)
and (utilisation_factor is H) then (number_of_spares is RS)

Step 4: Encode the fuzzy sets, fuzzy rules and procedures to perform fuzzy

inference into the expert system

The next task after defining fuzzy sets and fuzzy rules is to encode

them, and thus actually build a fuzzy expert system. To accomplish this

task, we may choose one of two options: to build our system using a

programming language such as C or Pascal, or to apply a fuzzy logic

development tool such as MATLAB Fuzzy Logic Toolbox1 from the

MathWorks or Fuzzy Knowledge BuilderTM from Fuzzy Systems

Engineering.

Most experienced fuzzy system builders often prefer the C/C++

programming language (Cox, 1999; Li and Gupta, 1995) because it

offers greater flexibility. However, for rapid developing and proto-

typing a fuzzy expert system, the best choice is a fuzzy logic

development tool. Such a tool usually provides complete environments

for building and testing fuzzy systems. For example, the MATLAB Fuzzy

Logic Toolbox has five integrated graphical editors: the fuzzy inference

system editor, the rule editor, the membership function editor, the

fuzzy inference viewer, and the output surface viewer. All these features

make designing fuzzy systems much easier. This option is also prefer-

able for novices, who do not have sufficient experience in building

fuzzy expert systems. When a fuzzy logic development tool is chosen,

the knowledge engineer needs only to encode fuzzy rules in English-

like syntax, and define membership functions graphically.

To build our fuzzy expert system, we will use one of the most

popular tools, the MATLAB Fuzzy Logic Toolbox. It provides a system-

atic framework for computing with fuzzy rules and graphical user

interfaces. It is easy to master and convenient to use, even for new

fuzzy system builders.

Step 5: Evaluate and tune the system

The last, and the most laborious, task is to evaluate and tune the system.

We want to see whether our fuzzy system meets the requirements
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specified at the beginning. Several test situations depend on the mean

delay, number of servers and repair utilisation factor. The Fuzzy Logic

Toolbox can generate surface to help us analyse the system’s perform-

ance. Figure 4.22 represents three-dimensional plots for the two-input

one-output system.

But our system has three inputs and one output. Can we move

beyond three dimensions? When we move beyond three dimensions,

we encounter difficulties in displaying the results. Luckily, the

Fuzzy Logic Toolbox has a special capability: it can generate a three-

dimensional output surface by varying any two of the inputs and

keeping other inputs constant. Thus we can observe the performance of

our three-input one-output system on two three-dimensional plots.

Although the fuzzy system works well, we may attempt to improve it

by applying Rule Base 2. The results are shown in Figure 4.23. If we

compare Figures 4.22 and 4.23, we will see the improvement.

However, even now, the expert might not be satisfied with the

system performance. To improve it, he or she may suggest additional

sets – Rather Small and Rather Large – on the universe of discourse

Number of servers (as shown in Figure 4.24), and to extend the rule base

according to the FAM presented in Figure 4.25. The ease with which a

fuzzy system can be modified and extended permits us to follow the

expert suggestions and quickly obtain results shown in Figure 4.26.

Figure 4.22 Three-dimensional plots for rule base 1

Figure 4.23 Three-dimensional plots for rule base 2
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Figure 4.24 Modified fuzzy sets of number of servers s

Figure 4.25 Cube FAM of rule base 3

Figure 4.26 Three-dimensional plots for rule base 3
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In general, tuning a fuzzy expert system takes much more time and effort

than determining fuzzy sets and constructing fuzzy rules. Usually a reasonable

solution to the problem can be achieved from the first series of fuzzy sets and

fuzzy rules. This is an acknowledged advantage of fuzzy logic; however, improv-

ing the system becomes rather an art than engineering.

Tuning fuzzy systems may involve executing a number of actions in the

following order:

1 Review model input and output variables, and if required redefine their

ranges. Pay particular attention to the variable units. Variables used in the

same domain must be measured in the same units on the universe of

discourse.

2 Review the fuzzy sets, and if required define additional sets on the universe

of discourse. The use of wide fuzzy sets may cause the fuzzy system to

perform roughly.

3 Provide sufficient overlap between neighbouring sets. Although there is no

precise method to determine the optimum amount of overlap, it is

suggested that triangle-to-triangle and trapezoid-to-triangle fuzzy sets

should overlap between 25 and 50 per cent of their bases (Cox, 1999).

4 Review the existing rules, and if required add new rules to the rule base.

5 Examine the rule base for opportunities to write hedge rules to capture the

pathological behaviour of the system.

6 Adjust the rule execution weights. Most fuzzy logic tools allow control of the

importance of rules by changing a weight multiplier.

In the Fuzzy Logic Toolbox, all rules have a default weight of (1.0), but

the user can reduce the force of any rule by adjusting its weight. For

example, if we specify

If (utilisation_factor is H) then (number_of_spares is L) (0.6)

then the rule’s force will be reduced by 40 per cent.

7 Revise shapes of the fuzzy sets. In most cases, fuzzy systems are highly

tolerant of a shape approximation, and thus a system can still behave well

even when the shapes of the fuzzy sets are not precisely defined.

But how about defuzzification methods? Should we try different

techniques to tune our system?

The centroid technique appears to provide consistent results. This is a well-

balanced method sensitive to the height and width of the total fuzzy region as

well as to sparse singletons. Therefore, unless you have a strong reason to believe

that your fuzzy system will behave better under other defuzzification methods,

the centroid technique is recommended.
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4.8 Summary

In this chapter, we introduced fuzzy logic and discussed the philosophical ideas

behind it. We presented the concept of fuzzy sets, considered how to represent a

fuzzy set in a computer, and examined operations of fuzzy sets. We also defined

linguistic variables and hedges. Then we presented fuzzy rules and explained the

main differences between classical and fuzzy rules. We explored two fuzzy

inference techniques – Mamdani and Sugeno – and suggested appropriate areas

for their application. Finally, we introduced the main steps in developing a fuzzy

expert system, and illustrated the theory through the actual process of building

and tuning a fuzzy system.

The most important lessons learned in this chapter are:

. Fuzzy logic is a logic that describes fuzziness. As fuzzy logic attempts to model

humans’ sense of words, decision making and common sense, it is leading to

more human intelligent machines.

. Fuzzy logic was introduced by Jan Lukasiewicz in the 1920s, scrutinised by

Max Black in the 1930s, and rediscovered, extended into a formal system of

mathematical logic and promoted by Lotfi Zadeh in the 1960s.

. Fuzzy logic is a set of mathematical principles for knowledge representation

based on degrees of membership rather than on the crisp membership of

classical binary logic. Unlike two-valued Boolean logic, fuzzy logic is multi-

valued.

. A fuzzy set is a set with fuzzy boundaries, such as short, average or tall for men’s

height. To represent a fuzzy set in a computer, we express it as a function

and then map the elements of the set to their degree of membership. Typical

membership functions used in fuzzy expert systems are triangles and

trapezoids.

. A linguistic variable is used to describe a term or concept with vague or fuzzy

values. These values are represented in fuzzy sets.

. Hedges are fuzzy set qualifiers used to modify the shape of fuzzy sets. They

include adverbs such as very, somewhat, quite, more or less and slightly. Hedges

perform mathematical operations of concentration by reducing the degree of

membership of fuzzy elements (e.g. very tall men), dilation by increasing the

degree of membership (e.g. more or less tall men) and intensification by

increasing the degree of membership above 0.5 and decreasing those below

0.5 (e.g. indeed tall men).

. Fuzzy sets can interact. These relations are called operations. The main

operations of fuzzy sets are: complement, containment, intersection and

union.

. Fuzzy rules are used to capture human knowledge. A fuzzy rule is a

conditional statement in the form:

IF x is A

THEN y is B
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where x and y are linguistic variables and A and B are linguistic values

determined by fuzzy sets.

. Fuzzy inference is a process of mapping from a given input to an output by

using the theory of fuzzy sets. The fuzzy inference process includes four steps:

fuzzification of the input variables, rule evaluation, aggregation of the rule

outputs and defuzzification.

. The two fuzzy inference techniques are the Mamdani and Sugeno methods.

The Mamdani method is widely accepted in fuzzy expert systems for its ability

to capture expert knowledge in fuzzy rules. However, Mamdani-type fuzzy

inference entails a substantial computational burden.

. To improve the computational efficiency of fuzzy inference, Sugeno used a

single spike, a singleton, as the membership function of the rule consequent.

The Sugeno method works well with optimisation and adaptive techniques,

which makes it very attractive in control, particularly for dynamic nonlinear

systems.

. Building a fuzzy expert system is an iterative process that involves defining

fuzzy sets and fuzzy rules, evaluating and then tuning the system to meet the

specified requirements.

. Tuning is the most laborious and tedious part in building a fuzzy system. It

often involves adjusting existing fuzzy sets and fuzzy rules.

Questions for review

1 What is fuzzy logic? Who are the founders of fuzzy logic? Why is fuzzy logic leading to

more human intelligent machines?

2 What are a fuzzy set and a membership function? What is the difference between a

crisp set and a fuzzy set? Determine possible fuzzy sets on the universe of discourse

for man weights.

3 Define a linguistic variable and its value. Give an example. How are linguistic variables

used in fuzzy rules? Give a few examples of fuzzy rules.

4 What is a hedge? How do hedges modify the existing fuzzy sets? Give examples of

hedges performing operations of concentration, dilation and intensification. Provide

appropriate mathematical expressions and their graphical representations.

5 Define main operations of fuzzy sets. Provide examples. How are fuzzy set operations,

their properties and hedges used to obtain a variety of fuzzy sets from the existing

ones?

6 What is a fuzzy rule? What is the difference between classical and fuzzy rules? Give

examples.

7 Define fuzzy inference. What are the main steps in the fuzzy inference process?

8 How do we evaluate multiple antecedents of fuzzy rules? Give examples. Can different

methods of executing the AND and OR fuzzy operations provide different results? Why?
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9 What is clipping a fuzzy set? What is scaling a fuzzy set? Which method best preserves

the original shape of the fuzzy set? Why? Give an example.

10 What is defuzzification? What is the most popular defuzzification method? How do we

determine the final output of a fuzzy system mathematically and graphically?

11 What are the differences between Mamdani-type and Sugeno-type fuzzy inferences?

What is a singleton?

12 What are the main steps in developing a fuzzy expert system? What is the most

laborious and tedious part in this process? Why?
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